Optimal Sampling and Clustering in the Stochastic Block Model

Seyoung Yun (KAIST) and Alexandre Proutiere (KTH) NeurIPS 2019 SBM: Random graph with n nodes and K non-overlapping clusters, $\mathcal{V}_1, \ldots, \mathcal{V}_K$, of respective sizes $\alpha_1 n, \ldots, \alpha_K n$ with $\alpha_k > 0$ for all k. If node pair $(v, w) \in \mathcal{V}_i \times \mathcal{V}_j$ is sampled, an edge is observed w.p. p_{ij} . $p = [p_{ij}]_{1 \leq i,j \leq K}$.

Given a sampling budget T, design a sampling and clustering algorithm recovering, from the edge observations, the clusters as accurately as possible.

Information-theoretical limits

An algorithm π is (s,β) -locally stable at (p, α) , if there exists a sequence $\eta_n \geq 0$ with $\lim_{n\to\infty} \eta_n = 0$ such that for all partition vectors $\tilde{\alpha}$ such that $\|\tilde{\alpha} - \alpha\|_2 \leq \beta$, π mis-classifies at most s nodes with probability greater than $1 - \eta_n$ for any n.

Theorem 1. Let s = o(n). Assume that there exists a (s, β) -locally stable clustering algorithm at (\mathbf{p}, α) for $\beta \geq \frac{s}{n} \log(\frac{n}{s})$. Then we have: $\liminf_{n \to \infty} \frac{2TD(\mathbf{p}, \alpha)}{n \log(n/s)} \geq 1$, where:

$$\begin{split} D(\boldsymbol{p}, \boldsymbol{\alpha}) &= \max_{\boldsymbol{x} \in \mathcal{X}(\boldsymbol{\alpha})} \Delta(\boldsymbol{x}, \boldsymbol{p}), \\ \Delta(\boldsymbol{x}, \boldsymbol{p}) &= \min_{i, j: i \neq j} \sum_{k=1}^{K} x_{ik} K L(p_{ik}, p_{jk}) \quad \text{and} \\ \mathcal{X}(\boldsymbol{\alpha}) &= \left\{ \boldsymbol{x} : \alpha_i x_{ij} = \alpha_j x_{ji}, \ \sum_{i=1}^{K} \alpha_i \sum_{j=1}^{K} x_{ij} = 1, \ \text{and} \ x_{ij} \geq 0, \ \forall i, j \right\}. \end{split}$$

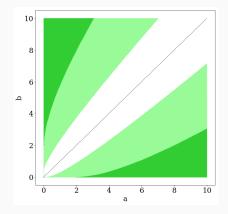
Binary symmetric SBM: K = 2, $\alpha = (1/2, 1/2)$, $p_{11} = p_{22} = \frac{af(n)}{n}$, and $p_{12} = p_{21} = \frac{bf(n)}{n}$. Budget T = n(n-1)/2.

Exact recovery is possible if either $f(n) = \omega(\log(n))$ or $f(n) = \log(n)$ and

 $\max\{\sqrt{a} - \sqrt{b}, \sqrt{b} - \sqrt{a}\} > \sqrt{2} \quad \text{(Non-adaptive sampling)}\\ \max\{a\log(\frac{a}{b}) + b - a, b\log(\frac{b}{a}) + a - b\} > \frac{1}{2} \quad \text{(Adaptive sampling)}$

(For non-adaptive sampling, all node pairs are sampled once)

Condition for exact recovery



Light green: exact recovery is possible using adaptive sampling. Dark green: exact recovery is possible using non-adaptive sampling.

ASP algorithm:

Step 1. Use a small fraction of the observation budget and apply spectral methods to obtain initial cluster estimates;

Step 2. Use these estimates to estimate the SBM parameters, and derive \hat{x}^* of $x^*(p, \alpha) = \arg \max_{x \in \mathcal{X}(\alpha)} \Delta(x, p)$;

Step 3. \hat{x}^* dictates the way to sample edges with the remaining budget, and based on these additional observations, the cluster estimates are improved.

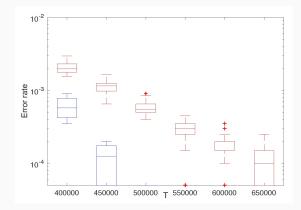
Computational complexity: $O(T \log(n))$.

Assume that there exist positive constants κ_L and κ_U such that

(A1)
$$\left| \log \left(\frac{p_{ik}(1-p_{jk})}{p_{jk}(1-p_{ik})} \right) \right| \le \kappa_U$$
 for all i, j, k
(A2) $\kappa_L \le \left| \log \left(\frac{p_{ik}}{p_{jk}} \right) \right|$ for all i, j, k .

Theorem 2. Let s = o(n). The ASP algorithm mis-classifies less than s nodes with high probability, if $\liminf_{n\to\infty} \frac{2TD(\mathbf{p}, \alpha)}{n\log(n/s)} \ge 1$.

Numerical experiments



Blue: ASP algorithm.

Red: Optimal clustering algorithm with non-adaptive sampling.